
The zx2c4 pass password manager

BV

[2015-07-08 Wed 19:57]

I'm moving from KeePassX and LastPass to zx2c4 pass command line
password manager.

1 Getting started

1.1 Installation

Pass is available as a Debian/Ubuntu package or easy to install from source.

1.2 Initialization

Initialize the store using an encryption subkey created just for this purpose.

$ pass init '0x4B774E09F6E1EDE9'

mkdir: created directory '/home/bv/.password-store/'

Password store initialized for 0x4B774E09F6E1EDE9

$ pass git init

2 Import

2.1 KeePassX

Use the KeePassX GUI to export to XML.

$ git clone http://git.zx2c4.com/password-store

$ cd password-store/contrib/importers

$ python keepassx2pass.py ~/keepassx.xml

Importing

$ rm ~/keepassx.xml

1

2.2 LastPass

Use LastPass web UI to download CSV.

$ ruby lastpass2pass.rb ~/lastpass.csv

$ rm ~/lastpass.csv

...

46 records successfully imported!

3 Integration

3.1 Bash

The main integration with the command line is through completion. When
installed as a system package doing the usual:

source /etc/bash_completion

should be what is needed. If pass is installed from source it may be
required to copy the pass.bash-completion script somewhere and source it
explicitly.

3.2 Emacs

Install password-store from package-list-packages then use password-store-*
functions.

3.3 X11

Pass is command-line oriented but can be easily and well integrated into X11
desktop environments.

3.3.1 Selection

By default pass uses xclip to send the password to the X11 "clipboard".
This is not the selection bu�er which gets pasted with Mouse-Button-3. To
�x:

$ export PASSWORD_STORE_X_SELECTION=primary

2

3.3.2 dmenu

Dmenu is a lightweight mechanism to display a bar across the top/bottom
of your X11 screen in order to make a selection. Zenity could also be used
but dmenu is fast, noninstrusive and requires no mousing. Pass comes with
passmenu to integrate pass with dmenu. I've hacked my copy to:

� set the store selection to primary (if used)

� make sure my copy of pass is in the PATH

� set the font to use for dmenu

Test with

$ passmenu --type

3.3.3 Saw�sh

My X11 sessions are based on the Saw�sh WM + MATE DE. To integrate
Pass I bind the above command to the Super-s key. I also make a little
runmenu script which essentially just calls dmenu_run and bind that to the
Super-r key.

To use a password in this environment, I put focus to the targeted pass-
word �eld, type Super-s, select the password key using dmenu functionality,
hit ENTER and provide my GPG passphrase if needed. The password is then
auto-typed.

4 Git tricks

Pass can use git to manage the ~/.password-store. Here are some
tips/tricks.

4.1 Sync to remote

Following this mailing list post set up for syncing to a remote git repository.
The local machine is where the initial Pass password store exists.

remote$ git init --bare ~/git/password-store

local$ pass git remote add origin ssh://USE@REMOTE:/home/USER/git/password-store

local$ cd ~/.password-store

3

http://sawfish.wikia.com/
http://mate-desktop.org/
http://lists.zx2c4.com/pipermail/password-store/2015-January/001331.html

local$ git push --set-upstream origin master

local$ cat <<EOF > .git/hooks/post-commit

git pull --rebase

git push

EOF

local$ chmod +x .git/hooks/post-commit

Test with:

local$ git generate foo 20

[logging from git showing a pull/push]

Note, only do this on password stores where generating the ssh/git tra�c
on each change to the store is acceptable.

4.2 Second local

Other local password stores using the remote are set up similarly.

$ pass init '0x4B774E09F6E1EDE9'

$ pass git init

$ pass git remote add origin ssh://bv@haiku:/home/bv/git/password-store

$ pass git branch --set-upstream-to=origin/master master

$ pass git pull --rebase

$ pass show foo

5 Usage

5.1 Organization

After importing from KeePassX and LastPass I had a hodge-podge of di-
rectories and �les. With KeePassX I had folder organization that roughly
followed a domain- or task-based hierarchy. LastPass tends to impose its own
organization. KeePassX helps to enforce some organization by encouraging
making new entries in the context of old ones while LastPass follows more
a capture-and-store approach and leaves any context forming as a follow-on
activity (which I never did). Finally, the conversion process uses name or ti-
tle of the entry with some character munging to make it �le-system-friendly.
To make matters worse, both my KeePassX and LastPass stores have a lot
of overlap (and yet worse, one whole folder came from a previous use of Rev-
elation). All in all, it's a mess and the only solution is develop some sorter
or just deal with things manually.

4

The organization I chose is a reverse domain name hierarchy + group/application
+ user but �attened. For example, the password for a my account in the
EDG wiki goes at:

gov/bnl/phy/www/edg/wiki/bv

Some things like SSH key passphrases or domain passwords transcend
some levels of the hierarchy so I have:

ssh/<some-name>

gov/bnl/domain/bviren

gov/bnl/phy/domain/admin

5.2 Con�ict with Gnome Keyring Manager

$ pass show dir/name

gpg: WARNING: The GNOME keyring manager hijacked the GnuPG agent.

gpg: WARNING: GnuPG will not work properly - please configure that tool to not interfere with the GnuPG system!

...

Oh my. Oh, hell, why not.

$ sudo sed -i s/AGENT_ID/AGENX_ID/ `which gpg2`

6 Links

� Hacker News entry on Pass with some good ideas

7 Ideas

One thing that makes pass great is that it's simple and open to interpreta-
tion. Here are some ideas for further development.

7.1 Hashed key index

By default, pass shows the key by which a password is looked up in plain
text as the directory/�le name. It is typical to usage domain of the password
into this key which means anyone able to see the password store can know
what domains one accesses. A common method suggested to combat this
is simply making the password store reside in an ENCFS or other type of
encrypted container.

5

http://www.phy.bnl.gov/edg/w/
https://gebner.org/how-to-get-rid-of-the-the-gnome-keyring-manager-hijacked-the-gnupg-agent-warning.html
https://news.ycombinator.com/item?id=7495337

Another option is to use a (SHA1) hash for the �le name and maintain
an encrypted index �le that associates a human-readable key with that hash.
This key can then be any sort of meta data.

~/.password-store/.pass-index

da39a3ee5e6b4b0d3255bfef95601890afd80709 file://some/entry/filename

da39a3ee5e6b4b0d3255bfef95601890afd80709 file://someother/entry/filename

da39a3ee5e6b4b0d3255bfef95601890afd80709 mailto:user@example.com

da39a3ee5e6b4b0d3255bfef95601890afd80709 http://example.com/app

The example shows using URL schema to name the key (with file://

being left implicit)
For this to be useful, pass's completion functions would need support

added. To help write them more succinctly and consistently between shells,
the pass command itself should provide some abstraction:

$ pass complete --scheme file some

some/entry/filename

someother/entry/filename

$ pass complete --scheme mail example

user@example.com

Some problems with this idea mostly have to do with complexity and
incompatibility.

There is a slippery slope with this index as it's not much more of a leap
to specify using a "proper", single-�le database. But, this one step still
preserves the one-password-per-�le structure which makes things amenable
to using git.

Some conversion process is needed that will take a nominal password store
and make the index, renaming/moving/removing the plain-named entries.

If the hash is based on the content of the entry, then any edits needs to
rewrite the hash for the �lename as well as the index. Git is already doing
this so maybe it's better implemented on top of a bare git repository (but
see the slippery slope above).

Maybe a better, simpler, approach is to merely augment the pass status
quo and use a �le naming scheme that merely obfuscates the entry's domain.
Then, the index can become a simple key-�lename lookup to allow for more
memorable keys.

~/.password-store/.pass-index

some/entry/filename.gpg alias: an-alias

6

some/entry/filename.gpg alias: an alias with spaces

some/entry/filename.gpg email: user@example.com

some/entry/filename.gpg url: http://example.com/app

This index can processed regenerated periodically to remove �les that no
longer exist, warn about unindexed �les. It could also be fully generated
based on interpreting the entries.

7.2 Template-based Filters

At its core, the only semantic interpretation pass makes on an entry is
that the �rst line is the password. A common extension, and one that is
supported by at least the two converters I applied, is that subsequent lines
contain named �elds and/or free-form text.

The LastPass converter produces entries like:

<password>

<category> / <site> / <hierarchy>

username: <username>

password: <password>

url: <url>

....

The KeePassX produces:

<password>

username: <username>

url: <url>

comment: <free-form, multi-line text>

The idea with template-based �lters is to develop a parser of the com-
monly created entries, make the �elds available to a template system to
produce new output forms. For example,

$ pass show <name> | pass-filter auto-type-user-pass.j2

This might be then used to provide login auto typing like:

xdotool - <<<"type --clearmodifiers -- $(pass show <name> | pass-filter auto-type-user-pass.j2)"

Where the (Jinja2) template �le might look like:

7

{{ username }}\t{{ password }}\n

The pass-filter command would be responsible for trying to guess the
entry format or be told it explicitly

$ pass show from-keepassx/entry | pass-filter

$ pass show from-lastpass/entry | pass-filter --lastpass

$ pass show json/entry_in_json | pass-filter --json

$ pass show yaml/entry_in_yaml | pass-filter --json

8

	Getting started
	Installation
	Initialization

	Import
	KeePassX
	LastPass

	Integration
	Bash
	Emacs
	X11
	Selection
	dmenu
	Sawfish

	Git tricks
	Sync to remote
	Second local

	Usage
	Organization
	Conflict with Gnome Keyring Manager

	Links
	Ideas
	Hashed key index
	Template-based Filters

